Sigma Models, Minimal Surfaces and Some Ricci Flat Pseudo Riemannian Geometries
نویسنده
چکیده
We consider the sigma models where the base metric is proportional to the metric of the configuration space. We show that the corresponding sigma model equation admits a Lax pair. We also show that this type of sigma models in two dimensions are intimately related to the minimal surfaces in a flat pseudo Riemannian 3-space. We define two dimensional surfaces conformally related to the minimal surfaces in flat three dimensional geometries which enable us to give a construction of the metrics of some even dimensional Ricci flat (pseudo-) Riemannian geometries.
منابع مشابه
Some Ricci Flat (pseudo-) Riemannian Geometries
We define a class of two dimensional surfaces conformally related to minimal surfaces in flat three dimensional geometries. By the utility of the metrics of such surfaces we give a construction of the metrics of 2N dimensional Ricci flat (pseudo-) Riemannian geometries.
متن کاملSpecialized Orthonormal Frames and Embedding
We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge–Teitelboim gra...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملSome Higher Dimensional Vacuum Solutions
We study an even dimensional manifold with a pseudo-Riemannian metric with arbitrary signature and arbitrary dimensions. We consider the Ricci flat equations and present a procedure to construct solutions to some higher (even) dimensional Ricci flat field equations from the four dimensional Ricci flat metrics. When the four dimensional Ricci flat geometry corresponds to a colliding gravitationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000